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The Java 使いこなす／ Java でゲームを作ろう○ － 共通編 －

０ はじめに

この本を読んでいただき、ありがとうございます。

この本は、「The Java 使いこなす」 および 「Java でゲームを作ろう」の共通的な部分をお

さめた本となります。「Javaでゲームを作ろう」の第３弾から、本に準備作業を載せるのをや

め、サイトに載せます。本当は本に入れたいと思いましたが、このページだけで、なん 10ページ

とかかり（値段にはね返る）、それも毎回同じことを載せることになるので、いっそのこと、本の

中から省いてみました。

準備作業も初めての人にとっては、難しいかもしれません。

でも、ここであきらめずに、乗り越えていこう♪

乗り越えるところはまだまだある。こんなところであきらめてはいけません。

がんばろう！
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１　初級編　動かせる環境を作ろう

１－２　動かせる環境を作っていこう

１－１「Java のインストールについて」に続いて、次に、ゲームが動いて、作っていける環境を

準備していこう。

Java／ゲームが動いて作っていける環境…つまり、Java、それもJDK が動くような状態にしていく。

（通常、インストールしたままの状態では、JRE が動くような状態になっている。そのままでは、J

ava の実行はできても、開発はできません）

まずはサンプルプログラムをダウンロードしよう。

http://kinchannn.jp/javagame_common/ から HelloJavaGame.zip へのリンクを探してダウン

ロードしよう。

大文字／小文字を間違えないように入力してほしい。間違えると、ダウンロードできない。

ページの下の方にある
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ダウンロードしたら、zip ファイルを解凍しよう。

（最近のOSであれば、ファイルを右クリックすれば、解凍できる）

解凍すると下のような感じで解凍されるはずだ。

プログラムを組んだ後、実行するためには、コンパイルをしなくてはならない。

コンパイルとは、プログラムを実行できるように変換することである。

コンパイルをすると、「*.class」というファイルが作成される。

パスを変更しよう（Java8。Java11 以降は、先のページで紹介します）

コンパイルするために、パスの変更を行う。

HelloJavaGame フォルダの中に、「sta.bat」というのがある。

解凍されたファイル
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右クリックし、メモ帳で編集をクリックしよう。

（Windows10の場合は「編集」かもしれません）

すると、メモ帳（などテキストエディタ）で開くはずだ。

内容は、２行書かれている。

これから編集をしていきますが、編集を間違えると、動かなくなってしまう。はまる可能性もある

ので、気をつけて設定いこう。

まずは、内容について、説明する。
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１行目から説明していこう

set path=C:\Java\jdk-25.0.1\bin;%path%

まずは、いくつかの部分に分けて考えていくことができる。

「set path=」

set とはその通り、セットすることである。

環境変数と呼ばれる、プログラムの動作に必要な情報を保存する仕組みである。

ひのこのコマンドプロンプト内で有効となる設定となる。

path は何なのか？

path は、なにかを実行する時に（今回の場合は、Java のコマンドを実行する際に）、その右側に

書かれているフォルダを見るように設定する。

見えるようにしないと、見てくれない。

「C:\Java\jdk-25.0.1\bin」

この設定が、Java のコマンドが置いてある場所となる。

君がJava を置いた場所に編集しなおさなくてはいけない。

間違うと、Javaのコマンドを実行しようとしても、動かないので気をつけよう。

「;」

区切りとなる。複数のパス（場所）を設定できるということだ。

「%path%」

もともとのパスの設定を示す。この設定をする前に「path」という設定は、既にされている場合が

ある。

そのもともとの設定と合わせて新しい設定：path を作った（作り変えた）ということだ。

もともとのパスの前に、Java用のパスを追加した格好となる。

先ほども書いたが、どこかひとつでも設定を間違えると、動かなくなってしまう可能性がある。

気をつけて設定をしてほしい。

どこにJava をインストールしたかを確認しよう。

インストールした時に、フォルダの設定があったのだが、もう既に忘れているかもしれない。
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わたしの設定では、c:\Java フォルダの下に、いくつかのバージョンが置けるように設定している。

（著書の関係上、複数バージョンのJava が置いてあるが、読者におかれては、ひとつのみあれば

問題はない）

　最新のバージョンをどこに置いたかとを確認し、自分の環境に合わせてsta.bat を修正してほ

しい。
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「bin」フォルダはあるだろうか？選択しよう。

「javac.exe」はあるだろか？

このファイルがJava ファイルをコンパイルしてくれる実行ファイルとなる。
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下の図のように、クリックすると、フォルダのパスを全て表示してくれる。

それをコピーする。

［Ctrl］＋［c］キーか、右クリックのコピーなどで、コピーしよう。

先ほど開いた「sta.bat」はまだ表示しているだろうか？

なければ、もう一度前に戻って、開いてほしい。

コピーしたフォルダパスに置き換える。

「；」セミコロンは残すように注意してほしい。無くなってしまうと、区切りの場所がわからなく

なってしまう。Javaのコンパイルも実行もできなくなるし、もともとのパスもおかしくなって

しまって、影響がでてしまう。

間違いなく設定したら、忘れずに保存してほしい。

クリックすると、

パスを表示してくれる。
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２行目は、クラスパスの設定である。

クラスパスとは、他のクラス（モジュール）を参照する必要がある場合はこの場所に書くことに

なる。

「.」の部分のみ追加している設定となるが、今自分自身がいる場所をクラスパスに追加する。

ということになる。

どうもJava9 以降のようだが、設定／環境により、自分自身がいる場所についてもクラスパスに

追加しておかないと、実行するファイルが見つからない（NoClassDefFoundError）ることがある

ようだ。

おまいじないのように入れて置くのだ懸命だ。

コマンドプロンプトを立ち上げる。

HelloJavaGame フォルダの中にショートカットを置いてある。
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コマンドプロンプトが立ち上がった状態。

下の部分が一緒であるか確認する。

ファイルの置き場所は、人によって違うので、同じコマンドプロンプトを実行する場所とコマンド

プロンプトのショートカットが置いてある場所が一緒であることを確認すればよい。

（下のように「C:\Users\kinch\OneDrive\デスクトップ\HelloJavaGame>」ではなくてよいです）

一緒であるか確認する。
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もし、違う場合は、コマンドプロンプトのプロパティを開き

（Windows10では少しイメージが違いますが、プロパティを開いてください）

（※注意）

フォルダ位置違う場合だけにしてください。今回は、いろいろなフォルダを使うことになるので、

特殊な設定をすると、のちのちトラブルになる可能性があるためです。考えられるのは、コンパイ

ルするが、いつまで経っても反映されない、実行しても直ってない・・・等。
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コマンドプロントのプロパティが開く

先ほどのパスをコピーする。
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作業フォルダに貼り付ける。

貼り付けたら、一番下の［OK］を押す。

もう一度、コマンドプロンプトを開いて、パスが一緒になったかを確認する。

（確認方法は、先ほどのところに戻って、確認する）
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コマンドプロンプトで「sta」と入力して、Enter キーを押してみよう。

すると、以下のような感じで表示されるはずだ。

表示される内容は人によって違う。

①は、先ほど変更した、JDK のパスになる。

②の部分は、先ほど修正をしたJava のコンパイルや実行するファイルがある場所を示している。

③は、もともとのパスである。いろんなソフトをインストールしたりすると、追加されたりする。

「Java」だけではなく、いろんなパスが設定されていることが分かる。

この辺り（パス）の詳しい説明は、違うところで情報を仕入れてください。詳しく説明すると、

それだけで一冊の本ができてしまいます。DOS プロンプトやバッチファイルに慣れていない人は、

ぜひとも別に学んでほしいと思います。

このコマンドを実行したことで、コンパイルすることが可能になったはずです。

ちなみに、コマンドプロンプトを立ち上げなおしたら、「sta」を実行し直さなければいけませ

ん。設定の有効は、コマンドプロンプトの中だけとなるためです。

①

②

③
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次は、下のコマンドを実行してみよう。

「javac –version」

バージョンが表示されるはずだ。

ここでは、「javac」は、「25.0.1」であることが分かる。

ここでは、コンパイルできるかどうかを確認しただけだ。

（コンパイルするための実行ファイルが見えていれば、バージョンが表示される）

毎回、この「javac –version」を行う必要はない。

「sta」の実行を忘れたり、「sta」の内容が間違ったりしていると、下のように認識していな

いというメッセージを返してくる。

このままでは、コンパイルはできない。

内容が間違っている場合は、見直しが必要だ。前に戻って確認をしてほしい。
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いざ！コンパイル！

やっと、ここまでたどりついた。コンパイルしてみよう。

ここまでくれば簡単だ。「jc」と入力し実行する。

「jc」と入力すると、「javac」というコマンドを実行する。

エラーが無ければ、何事もなかったかのように終わる。

ちなみに「*.java」は、全てのJava ファイルという意味になる。全てのJava ファイルをコンパ

イルするということになる。

エラーがあったりすると、下のような感じで表示される。

あまり良い例では ありませんが、

HelloJavaGame.java のコンストラクタを HelloJavaGame1 にした例。

コンストラクタの場合は、戻り値を宣言する必要はないが、メソッドと勘

違いして、「その場合には、戻りがいるよね？」といった感じでエラーに

なっています。

何事もなかったかのように終わるだけ。

ちょっと拍子抜け？
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「class」クラスファイルの更新日時を見ると、コンパイルした日時に変わっているはずです。

ここまでくれば、コンパイルについては、バッチリです。
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実行しよう！

では、実行してみよう！

「j」と打って、ENTER キーを押してみよう。

すると・・・

表示されたであろうか？

下のように表示されれば、Java は動いたことになる。
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表示されなかった場合は、どこか問題があるはずだ。もう一度、確認してみよう。

実は、「j」を実行しときに、「j.bat」が起動されている。

「j.bat」の中身を見てみると、Java コマンドを実行していることが分かります。「HelloJavaG

ame」を起動する。ということになります。

毎回「java HelloJavaGame」と入力するのは大変なので、「j」で起動できるようにしています。

Java コマンドを実行している。

Java プログラムを実行する。
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１－３　プログラムを見てみよう

では、プログラムを見ていこう。初級編（共通編）でいきなり「プログラムを組んでみよう」

なんて言われると、ドキッとしてしまう人がいるかもしれない。少しずつでもいい。プログラム

を眺めることに慣れていこう。アレルギーを起こさないように、少しずつ慣れていこう。はじめ

は流し読みでかまわない。

「HelloJavaGame.java」を開いてみよう。初めての人は、ぜんぜん分からないコードが書いて

あるかもしれないが、最初の方から説明していこう。
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import java.awt.*;

import javax.swing.*;

import 文は、他の場所にあるプログラムを探すために設定しています。「java…」となってい

ることから分かるだろうか？Java（JDK）のインストールされた中に含まれているモジュールを

利用できるように宣言している。例えば「Font」クラスは「java.awt」パッケージに、「JFrame」

クラスは「javax.swing」パッケージに入っている。

22行目で「JFrame」を利用しているが、import で先に宣言しておくことにより、「JFrame」

のみの記述でよくなる。もし、import を宣言していないと、

javax.swing JFrame frame = new javax.swing JFrame("Hello Java Game!!");

と、実際の場所を記述しなくてはいけなくなる。

/**

* HelloJavaGame

*/

/** ～ */ の間は「コメント」となる。クラスやメソッドの始まりや定数、インスタンス変数

などは、こんな感じで書いておくと良いだろう。

プログラムの中では、「//」で書くことが多い。「//」は１行のコメントになる。

あとあとプログラムを見返して、なにをやっているのか分かりやすいように、コメントを入れ

ておくことは大事だ。大体こういうところは手を抜いてしまうが、大きなプログラムを作るとき

は、必ず書いておいた方がよい。

もっと大きなプログラムだと、何人もの人で作ったりするが、コメントが入っていなかったら、

他の人から「え～っ！！」って、思われるかもしれない。

コメントの部分は、紙面の都合上、飛ばしていくことする。

public class HelloJavaGame {

「public class」は、公開クラスであること（他からも利用可能なクラスであること）を示し

ている。

「HelloJavaGame」は、このクラス名（ファイル名と一緒）になる。
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/**

* ここからはじまります。

*/

public static void main(String[] args){

HelloJavaGame hg = new HelloJavaGame();

}

これは、メソッドと呼ばれるものとなる。「public static」では、クラスを new（インスタ

ンス化）することなく、呼び出しができるメソッドとなる。「インスタンス」という言葉が出て

きたが、まだ覚えなくてもよい。いつかまた、出てくることになる。

「void」は、返却が無い（リターンが無い）メソッドを表す。

「main」は、「mainメソッド」であることを表す。

カッコ内は引数と呼ばれる。必要な情報を渡すときに使う。例では「String」という文字型の

配列を渡すことになっている（約束をしている）。[]中カッコは配列であることを表します。St

ring を複数渡しているということになる。

実はこの「main」メソッドは特別な意味がある。Java を実行する時に最初に呼び出されるの

が、このメソッドとなる。覚えておこう。

次の行はこの「HelloJavaGame」を生成している文となる。「new HelloJavaGame()」で呼び出

されて生成される。生成されたオブジェクトは左辺である「hg」に格納されます。「hg」は自分

で決めます。今回は「hg」にしてみた。

最後の行「 } 」は、このメソッドの終わりを表す。

「main」メソッドはこれで終わりとなる。

/**

* コンストラクタ

*/

public HelloJavaGame(){

コンストラクタ。「main」メソッドで生成した時に呼び出される場所となる。

「new HelloJavaGame()」で呼び出されれる。

コンストラクタにリターンはない（返却はない）。そのため、main メソッドのように「void」

は書く必要はない。

（実際には、そのインスタンス自体が返却されてくる）
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// フレームを生成

JFrame frame = new JFrame("Hello Java Game!!");

// ×ボタンが押されたら、終了する

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// レイアウト設定

frame.setLayout(new BorderLayout());

フレームを生成する。フレームとは、Javaのフレームを表す。

「new JFrame」で JFrame オブジェクトをインスタンス化している。「インスタンス化」と、

わけの分からない言葉かもしれないが、とにかく「new」をしたというです。

中の引数は、フレームのタイトルとなる。（決まっている）

次の行は、×ボタンが押されたら、終了するようにしている。この設定をしておかないと、フ

レームは消えるが、コマンドプロンプトに戻ってこない状況となってしまう。

引数の「JFrame.EXIT_ON_CLOSE」がコマンドプロンプトにまで戻ってくる設定となります。

詳しくは「JavaDoc」を見てほしい。と、いうことで、JavaDoc の紹介をしていく。

外枠がフレーム（JFrame）である。

外周全てがフレームです。

内側はパネル（JPanel）で作っている。

白い部分がJPanel である。

フレームタイトル
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すでに

Install_yyyymmdd.pdf

（yyyymmddは最新バージョンと読み替えてください）

を見てくれた方は、JavaDoc を入れてくれているはずだ。

まだ入れていない方は、この機会に入れてほしい。

（上記のファイルを参照し、入れてほしい）

　すでにindex.html のショートカットを用意してくれているはずだ。

開いてみよう。

JavaDoc が開いた。
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JFrame クラスを見てみよう。

右側の検索窓にJFrame と入力し、javax.swing.JFrame を選択しよう。
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すると、JFrame の JavaDoc が開く

JFrameクラスのJavaDoc だ
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スクロールすると、setDefaultCloseOperation メソッド（今回、呼び出しているもの）を見つける

ことができるはずだ。

以前より見分けがつきにくくなっているが、

引数だ
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もう少し下を見てみると、引数の詳細が書いてある。

元々英語のJavaDoc のため、分かりにくい表現もあるかもしれないが、多少はガマンしよう。それ

でも分からなければ、ネット等を利用してみよう。

「EXIT_ON_CLOSE」は、「System の exit メソッドを使用してアプリケーションを終了する」と

ある。つまり、アプリケーションを終了することなる。

デフォルトの場合は、「自動的にフレームを隠す」と言っているが、アプリケーションを終了する

とは言っていない。

数ページをつかってJavaDoc の紹介をしてきた。

話を戻そう。

次はレイアウトの設定を行っていく。「BorderLayout」というレイアウトを利用している。ボ

ーダーレイアウトの詳細な説明は、話が複雑になるのでプチコラムに書いておくが（とりあえず

は分からなくてもよい）、フレームのレイアウトはボーダーレイアウトを利用している。
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――――――――――――――――――――――

プチコラム １

ボーダーレイアウトとは、５つの領域に分けて管理するレイアウトである。中央、北、南、東、

西に配置することができるが、それ以外ができないレイアウトとなる。

パネルを中央に配置しているが、パネル側では大きさを指定できないレイアウトとなる。つまり、

レイアウトがパネルの大きさを決めている。

レイアウトの中央のみに配置すると、パネルの大きさはフレームの内枠までの大きさとなる。フ

レームの大きさを変えたとしても、それにともなってパネルの大きさも自動で変わる。

他のレイアウトを選んでも良いですが、今回はボーダーレイアウトを選んでみた。

――――――――――――――――――――――

// パネルを生成

JPanel panel = new JPanel();

// パネルサイズを設定

panel.setPreferredSize(new Dimension(800, 600));

// レイアウト設定

panel.setLayout(null);

// フレームにパネルを設定

frame.setContentPane(panel);

次にパネルを作っていく。

パネルを生成して、パネルサイズを設定し、フレームに載せていく。

パネルの大きさは、フレームのサイズで決まると先ほど書いたが、最初の設定のみ行う。なぜかは

後ほど説明する。

レイアウトの設定はnull としている。パネルについては、特別なレイアウトは設定しない。こ

の設定でパネル内のコンポーネント（今回はラベル）を自分自身で配置する必要がある。もう少し

言えば、自分自身で自由に配置できるということになる。
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// ラベルを生成

JLabel label1 = new JLabel("Hello Java Game!!");

// フォントの設定

label1.setFont(new Font("ＭＳ ゴシック", Font.BOLD, 24));

// パネルにラベルを追加

panel.add(label1);

// ラベルの位置を設定

label1.setBounds(100, 100, 300, 30);

ラベルを追加し、パネル上に配置している。「Hello Java Game!!」と表示している部品だ。

１行目でラベルを生成し、表示する文字列を引数で渡している。

２行目（コメント行を除く）でフォントの設定を行っている。フォントは「ＭＳ ゴシック」、

BOLD を利用し、サイズは24にしている。（JavaDoc を見てみよう）

３行目でパネルに追加し、４行目でラベルを表示する位置と大きさを設定している。

４行目の引数の意味は、x, y, width, height となる。

x

y

ｗidth

height
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// ラベルを生成

JLabel label2 = new JLabel("v(^_^)");

// フォントの設定

label2.setFont(new Font("ＭＳ ゴシック", Font.BOLD, 48));

// パネルにラベルを追加

panel.add(label2);

// ラベルの色を設定

label2.setForeground(new Color(255, 96, 0));

// ラベルの位置を設定

label2.setBounds(180, 180, 300, 50);

「v(^_^)」のマークを表示する部分になる。先ほどの処理と、ほとんど変わらないが、４つ目の

処理が増えている。「setForeground」メソッドは、文字の色を決めるメソッドだ。「newColor」

で３つの引数を与えている。これは、Red、Green、Blue（RGB）で、数字が大きくなるほど明るく

なる設定となる。ここでは、赤色と緑を混ぜた色を作成している。

// フレームを表示

frame.setVisible(true);

// サイズを最適化する

frame.pack();

} // end HelloJavaGame

１行目で、フレームを表示する。同時にadd してきた部品も全て表示されることになる。

２行目で表示されたフレームをサイズ変更している。ここでどの大きさにすればよいかを判断する

ために、パネルの大きさを利用している。パネルの大きさに合わせてフレームの大きさが調整され

ることになる。

３行目でコンストラクタは終了する。

このクラスは終わりとなる。

どうだっただろうか？インストール、コンパイル、プログラムまで見てきた。
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プログラムは初めての人には難しいかもしれない。すぐに理解は難しいかもしれない。今は分か

らなくても、また、いつか戻ってきて、見直しをしてみてほしい。

JavaDoc を見ることに慣れて、ぜひとも新しいクラス、メソッドを使ってみてほしい。

また、本書のみによらず、良書を探すのが良いと思う。初心者向けの本を一冊読むといいだろう

（本書のみで全てを紹介できるとは思ってはいない）。基本を別の本で理解しながら、それを実際

に応用していく。習うのは別の良書、慣れるのは本書でやっていけば、身についていくと思ってい

る。

わたしの著書「The Java」も出版させていただいた。

こちらも初心者向けに作成させていただいた。ぜひとも、検討いただければと思っています。

――――――――――――――――――――――

プチコラム ２

プログラムが出てきて、大変だったかもしれない。でも、どこかを修正したり、文字をちょっと

変えてみたり・・・そうすれば、自分の作ったプログラムができる。

ぜひとも怖がらずに、次の一歩を進んでみよう。少しずつでいいから進んでいってみよう。

きっと、楽しくなること、間違いなしだ。

――――――――――――――――――――――
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JavaFX を学ぶ方へ

パスを変更しよう

新しく「JavaFX25」というフォルダを用意している。

JavaFX をコンパイル・実行する人は、その中身を見ていこう。

（Java11 から JavaFX は Java とは別梱包となっています。

　Java10 以前で JavaFX をコンパイル・実行する人は、この部分の反映は必要ありません）

「j.bat」「jc.bat」「sta.bat」の３つのファイルがある。

ひとつ上のフォルダへコピーしよう。

上のフォルダにコピーしました。

更新日付が変わりました。
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「sta.bat」を選択して、右クリックの「メモ帳で編集」をクリックしよう。

（Windows10は編集かも）

メモ帳などで開くはずです。
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すると、「sta.bat」の内容が表示される。

１行目と２行目の設定内容の詳細については、「Java」側で紹介しているので、そちらを見て

ください。

最終行は「JavaFX」のフォルダの「lib」フォルダを指定します。

（JavaFX をインストールをした場合にしてください。していない場合は、JavaFX の部分は放

っておいても良いし、削除しても良いです）

フォルダ名を合わせる。

コピー貼り付けしよう。

JavaFX も

同じように。

Java と

同じように。

JDK

JavaFX

追加するクラスパス
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フォルダ名を合わせる。

間違えるとはまるので注意して設定する。コンパイル通らない、または実行できない状態になる

ので気を付けよう。

「JavaFX」は「%path%」の設定は必要はありません。「%path%」は、もともとの設定を表して

いて、「PATH_TO_FX」は、JavaFX 専用として ここで作成するパスとなるためだ。

コマンドプロンプトを起動しよう。ダブルクリックだ。

コマンドプロンプトが起動される
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「sta」と入力して、「Enter」キーを押してみよう。

実行された内容が表示されていますが、さきほどのJava の設定の時と同じように、「path」

の方は、長い文の中に、先ほどのパスの内容が設定されてる。後ろに続いているパスの内容は、

元々のパスとなっていて、くっつけている。

「PATH_TO_FX」は、そのままの設定がされているのが分かる。

これでJavaFX を利用できる環境は整った。

――――――――――――――――――――――

プチコラム ３

　ここではJavaFX の動作確認までは行わない。

　続きは、「Java でゲームを作ろう３ JavaFX シューティングゲーム編」「Java でゲームを作

ろう４ JavaFX ３Ｄゲーム編」で行ってほしいと思う。

――――――――――――――――――――――
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１－４　利用ツールのご紹介

基本的に無料のツールばかり利用しています。君の慣れたツールがあれば、それを使えば構わな

い。もし、初めてやってみるような場合や、ツールを見比べたり、便利そうなツールがあるようで

あれば、その部分だけ使ったり、とかもありだ。

お金を極力かけずにやりたいという、わたしの思いもあるので、心配せず参考にしてほしい。

テキストエディタの紹介

まずはテキストエディタの紹介だ。Windows に添付されているメモ帳ではきついです。テキスト

エディタはいろいろとあるので、自分のあったものを探してください。

著者は今回の執筆を機会に、テキストエディタを変えてみた。

「Mery」というテキストエディタです。窓の杜やVector でダウンロード可能のようです。

ホームページは

http://www.haijin-boys.com/wiki/メインページ

となっています。

ホームページ

他にもいろいろなツールがあるので（フリーでもいろいろとある）、自分に合ったエディタを見

つけてみよう！
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画像編集

画像編集は、Windows に付いているペイントと、JTrim というツールを利用しています。

ペイントはご存知と思います。絵を書くときはペイントを利用しています。そして、ペイントでは

出来ない部分は、JTrimを利用しています。JTrimは画像の一部を透明にすることができます。こ

のことを利用して、画像を重ねた時に、後ろの画像や背景を透けて見せることができるようになり

ます。

ホームページは

http://www.woodybells.com/

と、なっている。

なお、更新はストップしているようだが、Windows10／11 でも問題なく使えているようなので、そ

のまま利用させていただいています。

ホームページ
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使い方は簡単です。

透明にしたい画像開き、「透過色設定」をクリックします。

透明にしたい部分をクリックすれば、色が白と灰色の格子状になります。

保存を忘れないようにしよう。

ちなみに、透過できる画像フォーマットは、gif と png のようです。

透明に色のところでクリック

→格子状になれば、透明になった。

透明色設定
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ここまでよく読んでくれた！

本編に進んでいこう！


